Abstract

Interpenetrating polymer networks of vinyl ester (VE) resin and polyurethane (PU) were synthesized using blend ratio of 93:7(w/w). Two sets of nanocomposites based on i) pure vinyl ester and ii)VE/PU IPN(93VE), were prepared with organically modified silica nanoparticle (OMS) as filler by 1, 2, 3 and 5% weight of the matrix resin. All the nanocomposites were characterized in terms of mechanical and thermomechanical properties.VE/silica nanocomposite with 2% filler (VES2) showed improvement in ultimate tensile strength by 83.5% and toughness by 42% compared to that of VE resin itself. The IPN based nanocomposite, 93VES2, exhibited 31.14%, 10.8% and 18%greater tensile strength, Young’s modulus and toughness respectively in comparison to that of the base 93VE IPN. IPN based nanocomposites were tougher than VE based nanocomposites. Storage modulus of nanocomposites was lower than that of 93VE and VE matrix system. Higher tanδmaxof the 93VE/OMS nanocomposites than that of the 93VE matrix was indication of more elastic nature of the later. Smaller size of dispersed domains was found in SEM micrographs for IPN based nanocomposites than that in micrographs of VE based nanocomposites of corresponding composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.