Abstract

First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different polymorphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the frame of density functional theory (DFT). The calculated structural and electronic properties are consistent with the previous theoretical and experimental results. The electronic structures reveal that m-BiVO4, op-BiVO4, and st-BiVO4 have indirect band gaps, on the other hand, zt-BiVO4 has a direct band gap. From the DOS and Mulliken’s charge analysis, it is observed that only m-BiVO4 has 6s2 Bi lone pair. Bond population analysis indicates that st-BiVO4 shows a more ionic nature and a similar result is obtained from the elastic properties. From the elastic properties, it is observed that st-BiVO4 is more mechanically stable than the others. st-BiVO4 is more ductile and useful for high electro-optical and electro-mechanical coupling devices. Our calculated thermodynamic properties confirm the similar characteristics found from electronic and elastic properties. m-BiVO4 is useful as photocatalysts, solid state electrolyte, and electrode and other polymorphs are applicable in electronic device fabrications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.