Abstract

The mechanical and thermodynamic properties of intermetallic compounds in the Ni–Ti system are studied by first-principles calculations. All phases show anisotropic elasticity in different crystallographic directions, in which Ni3Ti and NiTi2 are approaching the isotropy structure. The elastic moduli and Vicker’s hardness of Ni–Ti system intermetallic compounds decrease in the following order: Ni3Ti [Formula: see text] B2_NiTi [Formula: see text] B19[Formula: see text]_NiTi [Formula: see text] NiTi2, and Ni3Ti shows the best mechanical properties. The intrinsic ductile nature of Ni–Ti compounds is confirmed by the obtained [Formula: see text]/[Formula: see text] ratio. The temperature dependence of linear thermal expansion coefficients (LTECs) of the compounds is estimated by the quasi-harmonic approximation (QHA) method. Ni3Ti shows the largest values among all Ni–Ti intermetallic compounds. At room temperature, the LTEC for Ni3Ti is 8.92 × 10[Formula: see text] K[Formula: see text], which falls in between the LTEC of zirconia toughened alumina (ZTA) (7.0–9.5 × 106 K[Formula: see text]) and iron matrix (9.2–16.9 × 106 K[Formula: see text]); i.e., the thermal matching of the ZTA/iron composite will be improved by introducing Ni3Ti intermetallic compound into their interface. Other thermodynamic properties such as sound velocity and Debye temperature are also obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call