Abstract

The fabrication conditions of dense silicon carbide (SiC) composites containing chopped Tyranno Si-Al-C (SA) fiber were examined in this work; SiC compacts containing SA fiber (mean lengths: 214, 394 and 706 m) were hot-pressed at 1800°C for 30 min under a pressure of 31 MPa in Ar atmosphere. The fracture toughness of SiC composites with 40 mass% of SA fiber addition (sintering aid: 5 mol% Al4C3) increased from 2.8 up to 4.7 MPa•m1/2 as the fiber length increased from 214 to 706 m. The enhanced fracture toughness of the SiC composites was attributed to the lowering of fiber orientation angle (i.e., the angle between the fiber length and direction perpendicular to the hot-pressing direction) to 5° with increasing fiber length. The fracture toughness of SiC composites could be further enhanced through the incorporation of SA fibers with a carbon interface (thickness: 100 nm) into the SiC matrix. The fracture toughness of SiC composite containing 40 mass% of these fibers attained 6.0 MPa•m1/2. The thermal conductivity of SiC composites increased with fiber length from 30.5 W•m-1•K-1 to 45.5 W•m-1•K-1; with no significant influence being noted for the case of fibers with a carbon interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.