Abstract

The growing demand for increasingly more cost and energy effective electronics components is a challenge for the manufacturing industry. To achieve higher thermal conductivity in telecom components, an aluminum alloy with a composition of Al-2Si-0.8Cu-0.8Fe-0.3Mn was created for rheocasting. Yield strength and thermal conductivity of the material were investigated in the as cast, T5 and T6 heat-treated conditions. The results showed that in the as-cast condition thermal conductivity of 168 W/mK and yield strength of 67 MPa was achieved at room temperature. A T5 treatment at 200°C and 250°C increased thermal conductivity to 174 W/mK and 182 W/mK, respectively, while only a slight increase in yield strength was observed. Moreover, a T6 treatment resulted in similar thermal conductivity as the T5 treatment at 250°C with no significant improvement in yield strength. Therefore, the T5 treatment at 250°C was suggested as an optimum condition for the current alloy composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call