Abstract

The excellent emulsifying capacity of nanocellulose allows for the preparation of porous nanocellulose/polymer composites through the emulsion templating process. However, the effects of the polymer chemical structure and porosity on the material properties have not been extensively explored. Here, we discuss the effects of these two factors on the thermal and mechanical properties of the composites. Two types of porous nanocellulose/polymer composites were fabricated with styrene-divinylbenzene (poly(St-co-DVB)) or styrene-poly(ethylene glycol) dimethacrylate (poly(St-co-EGDMA)) copolymers as the polymer phases. The porosity of the composite was changed up to ∼50% v/v by varying the aqueous phase volume fraction in the original nanocellulose-stabilized w/o emulsions. As the porosity increased, the thermal conductivity of the composite decreased. The mechanical properties were strongly influenced by the polymer type; the nanocellulose/poly(St-co-DVB) composite showed stiff but brittle behavior, whereas the nanocellulose/poly(St-co-EGDMA) composite showed higher strength and toughness. In both types of composites, the nanocelluloses served as reinforcing agents, contributing to the improvement of the mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.