Abstract

The thermal and mechanical properties of poly (lactic acid) blended with high molecular weight PEG, i.e. PEG1000 and PEG6000 were compared. The contents of PEG added were 10, 12.5 and 15 % by weight, with respect to PLA. The PLA/PEG blends were modified by addition of organic peroxide in order to induced crosslinking. Addition of organic modified montmorrillonite (Cloisite 30B, C30B) was also performed in order to modify mechanical performance of PLA/PEG blends. C30B was prepared via master batch in PLA. Morphology, crystallization, thermal stability and mechanical properties of the blends were investigated using SEM, DSC, TGA and universal testing macine, respectively. Morphology of cryogenic fracture surface showed smooth brittle surface. PEG1000 well plasticized PLA where as PEG6000 shows better thermal stability and mechanical properties. The presence of PEG induced PLA to perform cold crystallization. Tm in PLA was slightly changed whereas degree of crystallinity of PLA was improved by PEG but slightly decreased by peroxide. The thermal stability of PLA was enhanced with the addtion of PEG6000. The toughening of PLA was confirmed by the increment of elongation at break. The exfoliation of C30B was interfered by the crosslink PLA. Then tensile strength of PLA/PEG/C30B/Luperox101 was then suppressed. The optimum properties, in term of toughening and thermal stability, were found at PEG content of 10 % rather than 15% by weight, for both PEG1000 and PEG6000.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call