Abstract
This work reports on the synthesis, mechanical, and thermal properties of in situ AlN/Al-12Si composite through laser powder bed fusion (LPBF) by blending Al-12Si powder with 5 vol% nano-sized BN particles. Incorporating nano-BN particles results in (i) formation of thermally stable AlN phase, preventing Si diffusion and breakdown of cellular structure, (ii) improvement of compressive yield strength (CYS), and (iii) reduction in coefficients of thermal expansion (CTE) and thermal conductivity. In addition, compared to Al-12Si alloy, the composite exhibits grain refinement from 38.8 to 1.2 μm in size, and the alteration of columnar grains (Al-12Si) to equiaxed grains (AlN/Al-12Si). At annealing temperatures above 573 K, the CYS of the unadulterated Al-12Si alloy had a ∼ 2.1 times greater reduction (from 285 to 200 MPa) compared to that of the composites (from 301 to 260 MPa). The formation of the AlN phase mitigates the significant reduction in CYS. The CTE of Al-12Si and AlN/Al-12Si are 27.3 × 10−6 K−1 and 24.3 × 10−6 K−1 respectively. There is good agreement between the measured CYS results and the calculated strengthening mechanisms. This work offers both theoretical insights and experimental data to support the use of LPBF AlN/Al-12Si composite in low- and moderate-temperature applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.