Abstract
Green thermoplastic elastomer vulcanizates (GTPV) nanocomposites using poly (vinyl chloride) (PVC) and nitrile butadiene rubber (NBR) containing 5 wt% Cloisite 30B as an organoclay and various concentrations of rice straw natural fibers were made by melt mixing process and compression molding. The effect of used organoclay and various loadings of rice straw was monitored through using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile tests and rheological measurements. The morphological investigations revealed that the GTPV nanocomposites reinforced by rice straw natural fiber show a more rough fracture surfaces indicated the existence of some interactions between the natural fiber and polymer matrix. Thermal decomposition measurements revealed a higher thermal stability for GTPV nanocomposites containing higher rice straw natural fibers. The tensile test analysis suggested that there is an optimum value for the weight fraction of rice straw to enhance the Young’s modulus and tensile strength of the prepared GTPV nanocomposites up to 9 MPa and 35 MPa, respectively. The effect of rice straw loading on the Young’s modulus of the PVC/NBR/organoclay GTPV nanocomposites was predicted through using the parallel and series equations of modified Ji’s model. The results show that the theoretical model can precisely predict the variation of Young’s modulus with respect to the rice straw loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.