Abstract

The development of novel methods for industrial production of metal-matrix composites with improved properties is extremely important. An aluminum matrix reinforced by “in situ” α-Al2O3 nanoparticles was fabricated via direct chemical reaction between molten aluminum and rutile TiO2 nanopowder under the layer of molten salts at 700–800 °C in air atmosphere. Morphology, size, and distribution of the in situ particles, as well as the microstructure and mechanical properties of the composites were investigated by XRD, SEM, Raman spectra, and hardness and tensile tests. Synthesized aluminum–alumina composites with Al2O3 concentration up to 19 wt.% had a characteristic metallic luster, their surfaces were smooth without any cracks and porosity. The obtained results indicate that the “in situ” particles were mainly cube-shaped on the nanometer scale and uniform matrix distribution. The concentration of Al2O3 nanoparticles depended on the exposure time and initial precursor concentration, rather than on the synthesis temperature. The influence of the structure of the studied materials on their ultimate strength, yield strength, and plasticity under static loads was established. It is shown that under static uniaxial tension, the cast aluminum composites containing aluminum oxide nanoparticles demonstrated significantly increased tensile strength, yield strength, and ductility. The microhardness and tensile strength of the composite material were by 20–30% higher than those of the metallic aluminum. The related elongation increased three times after the addition of nano-α Al2O3 into the aluminum matrix. Composite materials of the Al-Al2O3 system could be easily rolled into thin and ductile foils and wires. They could be re-melted for the repeated application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.