Abstract

In this study, the thermal and mechanical properties of nanocomposite materials were investigated. Produced nanocomposite materials are epoxy-based and reinforced with Multiwalled Carbon Nano Tube dopped polyvinyl alcohol (PVA) nanofibers. Nanofibers were produced by the electrospinning method. Nanofibers were used for reinforcement as 5, 10, and 15 number of layers. These nanocomposite materials were subjected to uniaxial tensile tests at constant tensile speed in accordance with ASTM D882-02 standards. Tensile strength, elasticity modulus, Poisson's ratio, and toughness values were obtained and these values were compared with the values of reference pure epoxy samples without the nanofiber. For obtaining the thermal properties of the samples Thermogravimetric and Differential Thermal Analysis were performed. In order to investigate the damage mechanisms, the fractured tensile test specimens' surfaces were visualized by Scanning Electron Microscopy. Mechanical and thermal properties of the epoxy were improved by using the PVA nanofibers dopped the MWCNT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call