Abstract
Abstract Ultrahigh molecular weight polyethylene (UHMWPE) is a known to be the material of choice for bearing components in joint arthroplasty. However, oxidation wear of UHMWPE components is considered to be a major drawback limiting the lifespan of implants. Vitamin E was considered as a promising antioxidant to prevent long-term oxidation and reduce the wear degradation of UHMWPE material. Nevertheless, there are limited results on the improvements of vitamin E on the mechanical and thermal properties of UHMWPE. In this study, we investigated the incorporation of 0.5–3 wt.% carbon nanoparticles: Multiwalled Carbon Nanotubes (MWCNTs), Graphene (GO) and Nanodiamonds (ND) on the mechanical and thermal properties of UHMWPE blended vitamin E (UHMWPE-E). Surface analysis of the composite powders showed well-dispersed carbon nanoparticles within the UHMWPE-E matrix. Thermogravimetric (TGA) and Differential Scanning Calorimetry (DSC) were used to study the thermal behavior of the nanocomposites. It was found that the addition of GO, MWCNTs and ND improved the thermal stability of the nanocomposites compared to neat UHMWPE-E. However, the addition of carbon nanoparticles had no significant effect on the crystallization parameters of the composites. In addition, the incorporation of MWCNT and ND improved significantly the fracture toughness of the composites. The addition of 0.7 wt.% ND and 1 wt.% MWCNT increased the fracture toughness from 5.93 MPa m1/2 for neat UHMWPE-E to 7.38 and 9.19 MPa m1/2 respectively. The enhanced fracture toughness and thermal stability of the nanocomposites could be due to the successful powder processing technique where an optimized mixing and ball milling parameters were used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.