Abstract

ABSTRACTIn this paper, a series of graphitic carbon nitride (g‐C3N4) was synthesized under different thermal oxidation etching temperatures and epoxy/g‐C3N4 composites were prepared via solution blending. The morphology and structure of g‐C3N4 were investigated by transmission electron microscope, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The tensile fracture morphology and structure of epoxy resin (EP) composites were demonstrated by scanning electron microscopy and XRD, respectively. Mechanical properties of EP composites were characterized by tensile testing, and the thermal performances were investigated by dynamic mechanical thermal analysis and thermal gravimetric analysis. The results revealed that the active groups on g‐C3N4 sheets increased under thermal oxidation etching and the C to N ratio of g‐C3N4 decreased from 0.94 to 0.76 with the increasing etching temperature. Noticeably, the tensile strength of EP composites was enhanced by 58% with the addition of C3N4‐NS‐500 and the thermal properties were also improved significantly, including T0.5 (the decomposition temperature at the mass loss of 50%) increased by 21.5 °C and glass transition temperature improved by 8 °C. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48598.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.