Abstract

High-density polyethylene (HDPE) nanocomposites reinforced with pristine and vinyltrimethoxysilane (VTMS)-treated alumina nanoparticles of 2, 4, and 6 wt% were melt-compounded in a twin-screw extruder followed by injection molding. Their structure, thermal and mechanical behaviors were studied. Fourier transform infrared (FTIR) spectra showed that VTMS was successfully covalently grafted to the alumina nanoparticles. The X-ray diffraction (XRD) patterns indicated that the alumina nanoparticle additions broadened the characteristic peak width of HDPE, indicating that they reduced the crystallite size of HDPE. The heat deflection temperature and thermogravimetric analyses demonstrated that the dimensional and thermal stability of HDPE were enhanced markedly by adding pristine and silane-treated alumina nanoparticles. The alumina nanoparticle additions were also beneficial in enhancing Young's modulus and yield strength of HDPE. The reinforcing effect was particularly apparent in the silane-treated nanocomposites due to improved filler–matrix interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call