Abstract

ABSTRACT In this study, TiC-reinforced CoCrFeMnNi high-entropy alloy (HEA) composites were prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The phase composition, microstructure, mechanical and thermal expansion behaviour of composite HEAs were investigated. The results reveal that the addition of TiC has no effect on the crystal structure, however, the microstructure and mechanical properties show a strong dependency on the TiC content. Compared to the original HEA, the composite HEA shows decreased grain size, resulting in TiC nanoparticles (NPs) retarding grain growth by pinning the grain boundaries. With increasing TiC content from 0 to 4 wt-%, significant increases in the hardness from 410 to 480 HV and compressive yield strength from 680 to 1100 MPa, which is mainly due to the grain boundary and dispersion strengthening effects. Moreover, the thermal expansion curves show linear increments up to 800°C and decrease with increasing TiC content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.