Abstract

YBCO (Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> Ba <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7-δ</sub> ) was doped with graphene oxide (GO) and reduced graphene oxide (rGO) in the following percentage weight concentrations: 0.1, 0.5 and 1% wt.. Lattice parameters, crystallite size, orthorhombicity and lattice strain were calculated using XRD analysis. The porosity of samples decreased by a maximum of 29% and 17% for GO and rGO doped samples respectively. Microhardness measurements were conducted using the Vickers hardness method at loads in the range of 0.245 - 2.940 N. These micro hardness measurements were used to calculate the Vickers hardness ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H<sub>V</sub></i> ), elastic modulus ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> ), yield strength ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Y</i> ), fracture toughness ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K<sub>IC</sub></i> ) and brittleness index ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</i> ) of the material. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H<sub>V</sub></i> was greater in GO doped samples than in rGO doped samples. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> increased by 63.94% for rGO and 85.52% for GO doped samples. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Y</i> increased by 63.80% for rGO and 85.40% for GO doped samples. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</i> decreased by 48.11% for rGO and 43.78% for GO doped samples. There was an increase in K <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IC</sub> for both GO and rGO samples. The indentation size effect (ISE) was observed during micro-hardness measurements. This ISE behaviour was analyzed using Meyers Law, PSR model, elastic/plastic deformation model and Hays Kendall model. The results showed that the Hay Kendall approach best described the ISE behaviour of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call