Abstract

As an important sustainable source of biomass, lignocellulosic materials are highly recalcitrant to biotransformation, which limits their use and prevents economically viable conversion into value-added products. Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biochemical feedstocks. In this work, a mixture of wood powder and waste paper was dissolved in the ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). Composite films were made from the regenerated lignocellulosic materials in [AMIM]Cl by adjusting the ratio of the raw materials. The physical and mechanical properties of biomass composite films were determined by optical microscopy (OM), Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), and tensile strength tests. The results indicated that lignocellulosic materials were dissolved in [AMIM]Cl by destroying inter- and intramolecular hydrogen bonds between lignocelluloses. With increasing waste paper cellulose content, the dissolution of the fir powder in [AMIM]Cl was accelerated, and the tensile strength and elongation at break of the composite films increased. The rate of dissolution initially rose rapidly with increasing content of waste paper cellulose content, but the rate leveled off when the content was above 40%. This research highlights new opportunities for biodegradable composite films made from waste biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.