Abstract

Lithium Nickel Manganese Cobalt Oxide (NMC) is one of the most common oxide cathode materials for Li-ion batteries. NMC is also under consideration for use in all solid-state batteries. However, differences in the coefficients of thermal expansion (CTE) between NMC and the solid electrolyte during composite electrode fabrication and differential expansion and contraction during electrochemical cycling will cause stresses possibly resulting in electrode fracture and battery capacity fade. As a consequence, we hot-pressed phase-pure polycrystalline NMC with controlled density and accurately measured the mechanical (elastic modulus, shear modulus, Poisson’s ratio and nanoindentation hardness) and physical properties (CTE and thermal conductivity). We believe that this is the first report of the mechanical and physical properties of commercially available NMC and these experimental data are important to predict or increase the cycle life of NMC as a cathode material for state-of-the-art Li-ion and advanced solid-state batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.