Abstract
Due to the demand in the use of electronics devices in industry, the usage of solder connections has increased. Concerning with the toxicity of lead in Sn-37Pb solder alloy, developing lead free solder alloy with low melting temperature is one of the most important issues in electronic industry. Previously, researchers found out that the most promising candidate of lead free solder alloy is Sn-3.0Ag-0.5Cu (SAC). However, the melting temperature of this solder alloy is 217°C, 34°C higher than Sn-37Pb. This can lead to high energy consumption in electronic industry. In this paper, In-Zn-Ga solder alloy was investigated as a potential candidate replacing SAC. This study covers on the physical and mechanical properties of the solder alloy. Differential Scanning Calorimetry (DSC) testing shows that this solder alloy gave low melting temperature as low as 141.31°C. The addition of Ga in In-Zn solder alloy lowered the melting temperature compared to SAC and Sn-37Pb. From coefficient of thermal expansion (CTE) analysis, the In-Zn-Ga solder alloy gives good expansion properties and able to avoid the mismatch between the solder and copper substrates. The density of In-Zn-Ga solder alloy is 6.801g/cm3, lower than SAC and Sn-37Pb. For the strength, single lap shear testing was conducted on the In-Zn-Ga solder alloy and the results is near to the strength of SAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.