Abstract

Background: Occurrence of disease complications in the abdominal aorta in Marfan syndrome, a connective tissue disorder caused by mutations in the gene encoding fibrillin-1, is relatively rare. We hypothesized that Marfan syndrome could affect the structure, vasomotor function and mechanical property of the abdominal aorta. Methods and Results: Abdominal aorta from mice at 3, 6, 9 and 12 months of age, heterozygous for the Fbn1 allele encoding a cysteine substitution (Fbn1<sup>C1039G/+</sup>, Marfan mice, n = 50), were compared with those from age-matched control littermates (n = 50). Marfan abdominal aorta demonstrated pronounced elastic fiber degradation and disorganization, concomitant with an increased aortic stiffness during aging. In the isometric force measurement, vasoconstriction in response to membrane depolarization or phenylephrine stimulation was similar in both Marfan and control abdominal aorta. However, Marfan abdominal aorta was less sensitive to the inhibition of the phenylephrine-induced contraction by indomethacin and SQ-29548, during which the release of thromboxane A<sub>2</sub> was one half of that of the controls. Nevertheless, the protein expression of cyclooxygenase-1 and cyclooxygenase-2 detected by Western immunoblotting was not different between the 2 strains. Conclusions: We demonstrated that Marfan syndrome affected abdominal aorta with respect to matrix elastic fiber organization, aortic stiffness and release of thromboxane A<sub>2</sub>.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.