Abstract

Oriented smectic liquid crystal elastomer fibres are prepared with a special wet-spinning technique. The continuous spinning process in principle allows the preparation of fibres with arbitrary length. In comparison to ordinary rubbers, they have unique mechanical properties that qualify them as potential candidates for mechanical actuator applications. We demonstrate that these fibres show a remarkable contraction and extension at the transition from the ordered smectic to the disordered isotropic phase. We characterise their most relevant physical properties, viz. the thermally driven shape changes, stress–strain relations and optical birefringence, by optical and mechanical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.