Abstract

Abstract Polyblend films were prepared from high-density polyethylene (HDPE) and poly(l-lactic acid) (PLLA) up to 20% PLLA by the melt blending method in an extrusion mixer with post-extrusion blown film attachment. The 80/20 (HDPE/PLLA) blend was compatibilized with maleic anhydride grafted polyethylene (PE-g-MA) in varying ratios [up to 8 parts per hundred of resin (phr)]. Tensile properties of the films were evaluated to obtain optimized composition for packaging applications of both non-compatibilized and compatibilized blends. The compositions HDPE80 (80% HDPE and 20% PLLA) and HD80C4 (80% HDPE, 20% PLLA and 4 phr compatibilizer) were found to be optimum for packaging applications. However, better tensile strength (at yield) and elongation (at break) of 80/20 (HDPE/PLLA) blend were noticed in the presence of PE-g-MA. Further, thermal properties and morphologies of these blends were evaluated. Differential scanning calorimetry (DSC) study revealed that blending does not much affect the crystalline melting point of HDPE and PLLA, but heat of fusion of 80/20 (HDPE/PLLA) blend was decreased as compared to that of neat HDPE. Spectroscopy studies showed evidence of the introduction of some new groups in the blends and gaining compatibility in the presence of PE-g-MA. The compatibilizer influenced the morphology of the blends, as apparent from scanning electron microscopy (SEM) and supported by Fourier transform infrared (FTIR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call