Abstract

In today's scenario, most of the research works are carried out on the replacement of synthetic fibers using eco-friendly materials called natural fibers. Although there are many research findings in connection with natural fibers, in this work, a new combination of natural fiber having high biomedical potential is reinforced in the polymer composite. Three different weight fractions of polylactic acid, basalt, and Cissus quadrangularis fibers were melt mixed using twin-screw extruder named as PBCQ 1, PBCQ 2, and PBCQ 3. The mechanical, physical, and thermomechanical properties were studied by testing tensile, flexural, impact, hardness, water absorption, Fourier-transform infrared spectroscopy, and dynamic mechanical analysis of the injection-molded biomedical composite specimens prepared as per ASTM standards. It was noticed that the PBCQ 2 composite has the maximum elongation strength, bending strength, shear strength, and shore D hardness compared to other composites taken in this study. Water absorption of PBCQ 1 and PBCQ 2 composites are relatively less than PBCQ 3. The scanning electron microscopy micrograph of PBCQ composites shows tight bonding between the matrix and fibers. The adhesion of matrix and fibers was confirmed by Fourier-transform infrared spectroscopy graph, which indicates the stretching of molecular structure for the occurrence of O–H, C=O, and C–H links. The dynamic mechanical analysis curve of the PBCQ 2 composite indicates high storage modulus and less loss modulus compared to PBCQ 1 and PBCQ 3 due to the low weight percentage of basalt fiber in these composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call