Abstract
This study aimed to investigate the effect of Titanium Dioxide TiO2 (anatase and rutile) on mechanical and microstructural properties of meta-halloysite based geopolymer mortars namely GMHA and GMHR series. Meta-halloysite received 2.5, 5.0, 7.5 and 10 wt% of anatase or rutile as addition before calcination and geopolymerization. The raw materials and the end products were characterized using XRD, FTIR, ESEM and MIP analyses. The flexural strength increases from 6.90 to 9.13 MPa and from 6.90 to 12.33 MPa for GMHA and GMHR series respectively. The cumulative pore volume decreases from 102.2 to 84.2 mm3 g−1 and from 102.2 to 51.3 mm3 g−1 for GMHA and GMHR products respectively. Both matrices present micrographs with very low capillaries pores and fractured surfaces that confirmed the enhancement of the mechanical properties. It was concluded that TiO2 in both forms is beneficial for the reduction of porosity and densification of geopolymer matrices. Rutile enabled more compact and denser geopolymer structure compared to anatase. The aforementioned results showed the efficiency of both fine TiO2 particles to improve the geopolymer network significant for its durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.