Abstract
This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH) 2, NaOH, NaOH + Na 2CO 3, KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 μm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO 2/Na 2O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.