Abstract

Abstract This paper is concerned with the experimental behaviour of a 316 austenitic stainless steel at room temperature and under non-proportional cyclic and ratchet strainings in tension–torsion-internal and external pressures. The main investigations deal with the over-strengthening due to the multiaxiality of the loadings. A classification of the different kinds of cyclic tests can be established with respect to the increasing maximum over-strengthening. Concerning the ratchetting effect, from tests performed under in or out-of-phase cyclic tension–torsion plus a static stress due to internal pressure, it is shown that the rate of the diametrical ratchetting is an increasing function of the phase lag between the cyclic components. Dislocation substructures resulting from cyclic and ratchetting tests are investigated and various kinds of microstructures are reported. An analysis of these microstructures shows that the over-strengthening is not solely related to the slip multiplicity but also to the development of heterogeneous substructures. It has been also possible to evaluate the intra- and inter-granular back stresses and the effective stress as a function of the strengthening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.