Abstract

This study deals with the mechanical and microstructural characterization of geopolymers synthesized from locally available fly ash. A low calcium fly ash was activated using a sodium silicate solution. Samples were characterized by means of flexural and compressive tests, Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). Porosity and pore size distributions were identified using mercury intrusion porosimetry and gas sorption. The compressive strength of the produced geopolymers, which is in the range of 1.6 to 53.3 N/mm2, is strongly related to the water content as well as SiO2/Na2O mass ratio of an alkali activator. The compressive strength significantly increased with decreases in the water content and increased silicon concentration used for the synthesis of geopolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.