Abstract

Protection of the skin against microbiological infection is provided by the permeability barrier and by antimicrobial proteins. We asked whether the expression of murine β-defensins (mBDs)-1, -3, and -14-orthologs of human β-defensins hBD-1, -2, and -3, respectively--is stimulated by mechanically/physicochemically (tape stripping or acetone treatment) or metabolically (essential fatty acid-deficient (EFAD) diet) induced skin barrier dysfunction. Both methods led to a moderate induction of mBD-1 and mBD-14 and a pronounced induction of mBD-3 mRNA. Protein expression of the mBDs was increased as shown by immunohistology and by western blotting. Artificial barrier repair by occlusion significantly reduced the increased expression of mBD-14 after mechanical injury and of all three mBDs in EFAD mice, supporting an interrelationship between permeability and the antimicrobial barrier. mBD-3 expression was stimulated in vitro by tumor necrosis factor-α (TNF-α), and a neutralizing anti-TNF-α antibody significantly reduced increased mBD-3 expression after barrier injury in mouse skin, indicating that induction of mBD-3 expression is mediated by cytokines. The expression of mBD-14 was stimulated by transforming growth factor-α and not by TNF-α. In summary, we demonstrated upregulation of mBD1, -3, and -14 after mechanically and metabolically induced skin barrier disruption, which may be an attempt to increase defense in the case of permeability barrier dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.