Abstract

In situ SAXS measurements were made on periodic mesoporous carbon and silica-based materials as a function of pressure and temperature and in water to supercritical conditions. Our data show that periodic mesoporous silica-based materials exhibit substantial mechanical strength. The pore structure, size and related mesoscale properties appear to directly impact the mechanical response of silica-based materials to high pressures and temperatures. Our results indicate that hydrolysis does not seem to be responsible for the mechanical collapse of the pore structure of silica-based mesoporous materials under high pressure conditions. SBA-15 type mesoporous carbon exhibits excellent hydrothermal stability under extreme conditions. The mesostructure of FDU-12 silica is irreversibly disordered after extreme hydrothermal exposure in a manner consistent with H2O dissociation reactions causing topological alteration of the silicate network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.