Abstract

A powder metallurgy route based on high-energy ball milling, powder consolidation by hot extrusion and cold rolling was used to produce Al composite wires reinforced with Al2O3 nanoparticles. The process was capable of preparing fully dense nanocomposites characterized by well dispersed nanoparticles in a ultra-fine grained matrix. Ball milling led to the fragmentation of the passivation oxide layer that covers the aluminum particles and of the alumina particle clusters added ex-situ in addition to embedding these nano-sized particles in the Al matrix and thus producing optimal precursors for subsequent consolidation. The nanocomposites showed improved mechanical performances in term of hardness and tensile strength. They also exhibited excellent damping behavior at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call