Abstract
AbstractPolymer‐ceramic composite coatings manufactured from calcium carbonate and ethylene‐methacrylic acid copolymer (EMAA) were prepared via a thermal spray process employing different CaCO3 filler sizes (average size of 2.8, 9 or 36 μm) and loading levels from about 2.5 to 7 wt%. The optimum filler feeding characteristics, deposition efficiency and deposition rate were obtained with a 36 μm sized CaCO3. Tensile properties, peel strength, and the erosion resistance of a pure EMAA and CaCO3‐EMAA composite coatings were investigated. It was found that the tensile strain at fracture of the composite coating decreased with the addition of filler to a greater degree than that observed in compression‐molded polymer composites. This is attributed to an inhomogenous distribution of the filler, with more being concentrated at the boundaries of the deposited polymer particles, thereby establishing a rigid framework within the coating. Only a small filler content is necessary to establish large changes in the mechanical properties of the coating. The peel strength of a composite coating decreases with filler content, both on a mild steel substrate and a previously sprayed polymer coating. Bonding to the latter is significantly higher and offers a possibility as a bonding layer between substrates and composite coatings. The coefficient of friction is lowered with the addition of a filler. Erosion testing has shown that the erosion resistance of PF111 is little improved overall with filler addition, although some increase is found for filler contents less than 5 vol%. Polym. Eng. Sci. 44:1448–1459, 2004. © 2004 Society of Plastics Engineers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.