Abstract

Most tree biomechanics models assume uniformity of mechanical properties within a tree, and only a few studies have focused on differences in mechanical status among branches. We examined mechanical properties of 49 branches of two 10-year-old trees of Acer rufinerve Sieb. et Zucc. For each branch, bending moment due to its own fresh mass, elastic modulus, section modulus and flexural stiffness were obtained. Elastic modulus of the branch was correlated with the density and thickness of the fiber cell wall and decreased with crown depth, indicating that branches at lower positions were more elastic than branches at upper positions. Compared to lower branches, upper branches were less inclined, possessed thicker growth rings, more long shoots and were subject to smaller stresses. The leaf arrangement in the upper branches might be effective in transmitting more light to the lower branches. In contrast, the lower branches were more inclined toward the horizontal and subject to greater stresses than the upper branches. Lower branch inclinations were attributed to smaller dry matter investment in diameter growth. Upper and lower branch inclinations were slightly greater and smaller, respectively, than those predicted by beam theory. The alleviation in inclination of the lower branches is probably caused by negative gravitropic responses such as tension wood formation or upward shoot elongation, or both. The horizontal display of leaves in the lower branches would be effective in light interception. The reduction in cost of the lower branches can be adaptive because they have a shorter life expectancy than the upper branches. The results showed that an adaptive tree form is realized by a vertical gradient in branch mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call