Abstract

Mechanical and dynamic characteristics of basalt fiber-reinforced polymer (BFRP) composites were experimentally investigated in terms of natural frequency and damping properties. Epoxy resin of BFRP composites was modified by nanoclay (NC) particles at different weight contents (0, 0.5, 1, 1.5, 2, and 3 wt%). Mechanical tests were performed with tensile, flexural, and impact measurements in accordance with ASTM standards. Impact properties of the samples were evaluated by using Charpy impact tests in accordance with ISO 179/92 standards for both of edgewise and flatwise impact directions. After the mechanical and impact tests, damage mechanisms of the fractured samples were analyzed over the damaged regions, and their morphologies were analyzed by using scanning electron microscopy. In vibration tests, dynamic properties such as loss and storage modulus were evaluated only for fundamental natural frequency, and their corresponding damping properties were measured by using the half-power bandwidth method from frequency response curves. Results showed that the small amount of NC particle incorporations into BFRP composites was found the most effective for damping and natural frequency of the produced NC modified basalt/epoxy nanocomposites, and incorporation of NC particles into the epoxy resin improves the flexural strength up to the 29%, tensile strength up to the 7.61%, and impact resistance (edgewise impact) up to the 16.8%, at NC contents of 1.5, 2, and 0.5 wt%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.