Abstract

The mechanical and dynamic mechanical properties of cellulose fibers-reinforced polystyrene composites were investigated as a function of cellulose fiber content and coupling agent effect. The composites were prepared using a corotating twin-screw extruder and after injection molding. Three levels of filler loading (10, 20, and 30 wt%) and a fixed amount of coupling agent (2 wt%) were used. The results showed that a cellulose fiber loading of more than 20 wt% caused decrease in the mechanical properties. The addition of coupling agent substantially improves the mechanical and dynamic mechanical properties. The use of coupling agent improved the storage modulus and reduced the damping peak values of the composites due to the improved interfacial adhesion. The height of the damping peak was found to be dependent on the content of cellulose fiber and the interfacial adhesion between fiber and matrix. The adhesion factor values confirm that the better adhesion occurs when coupling agent is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.