Abstract
Aiming to generate wealth from waste and due to their significant fire threats to forests and their rich cellulose content, lignocellulosic pine needle fibers (PNFs) are utilized in this study as a reinforcement of the thermoplastic elastomer styrene ethylene butylene styrene (SEBS) matrix to create environmentally friendly and economical PNF/SEBS composites using a maleic anhydride-grafted SEBS compatibilizer. The chemical interaction in the composites studied by FTIR shows that strong ester bonds are formed between reinforcing PNF, the compatibilizer, and the SEBS polymer, leading to strong interfacial adhesion between the PNF and SEBS in the composites. This strong adhesion in the composite exhibits higher mechanical properties than the matrix polymer indicating a 1150 % higher modulus and a 50 % higher strength relative to the matrix. Further, the SEM pictures of the tensile-fractured samples of the composites validate this strong interface. Finally, the prepared composites show better dynamic mechanical behavior indicating higher storage and loss moduli and Tg than the matrix polymer suggesting their potential for engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.