Abstract

The conservation of natural resources, efficient use of industrial side-streams, and reduction of environmental impacts are the main targets of the construction sector worldwide. However, the low ambient temperatures and long harsh winter seasons in northern regions limit the use of industrial side-streams in construction activities under cold weather conditions due to their slow strength development rate. This study aimed to develop an eco-friendly construction material suitable for construction under cold weather conditions using blast furnace slag as a binder and fine aggregate admixed with a calcium silicate hydrate seed accelerator in mortar. Natural sand (NS) was volumetrically substituted with 25%, 50%, 75%, and 100% of granulated blast furnace slag (GBFS) fine aggregate in mortar cured at fluctuating low/freezing temperatures (+5 to −5 °C), representing the late fall and early spring seasons in northern regions. The mortar's compressive strength increased with the incorporation of GBFS aggregate over the first three days of curing and decreased thereafter. A denser interfacial transition zone was captured around GBFS aggregates than NS in the three days old mortars. The deceleration influences of fluctuating low/freezing temperatures on the compressive strength development of mortars were diminished with time. Capillary water absorption increased with higher GBFS aggregate contents. Mortar with 25–50 vol.% GBFS aggregates exhibited greater frost resistance than control mortar with NS only. The incorporation of GBFS aggregate enhanced the mortar's resistance against a sulfuric acid attack. This study demonstrates the potential of GBFS aggregate for use in construction under cold weather conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call