Abstract

This study reports the results of a wide experimental campaign intended at investigating the mechanical and durability performance of structural concretes made with Recycled Concrete Aggregates (RCAs) and coal Fly Ash (FA). To this end, twelve mixtures were designed by replacing part of the ordinary constituents (i.e. cement, sand and coarse aggregates) of a reference one with RCAs and FA. Samples of these mixtures were subjected to various tests aimed at assessing both their structural properties and durability performance. As for the former, time evolution of compressive strength was monitored at various curing times up to 365 days, and the splitting strength was determined at 28 days. Moreover, the expected durability performance of the aforementioned concrete mixtures was scrutinised by measuring some relevant physical quantities, such as water permeability, carbonation depth and chloride-ions ingress at various curing ages.The results obtained from these tests are often not self-evident, as they unveil the synergistic effect of combining both RCAs and FA on the resulting physical and mechanical properties of “green” concrete. Moreover, they demonstrate that the current code restrictions on the use of both RCAs and FA for structural concrete might be significantly relaxed, especially if the delayed binder effect, induced by the latter, is duly taken into account and, hence, concrete properties are measured at curing times longer than the conventional 28 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.