Abstract

The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAMs) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant beta = 0.57 +/- 0.03 A-1 was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of approximately 1 A-1 found when the separation is varied by changing the length of the alkanethiol molecules. Calculations indicate that, for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.