Abstract

Calcium phosphate cement (CPC) is a widely used bone substitute in the clinic; however, the low strength of CPC limits its utilization. In this study, we investigated mechanical influences of chitosan fiber combined with gelatin on CPC, and examined the biocompatibility of the new composite with rat bone marrow stromal cells. Compared to the fiber impregnated in phosphate buffered saline (80.5 MPa), our study showed that tensile strength of chitosan fiber increased 106 and 114% with the impregnation of gelatin at the mass fraction 5 and 10%, although this increase was not statistically significant. It was demonstrated by Fourier transform infrared spectroscopy that the characteristic absorption bands of chitosan were changed with the addition of gelatin. The optimal flexural strength enhancement was obtained when CPC was reinforced with fiber at volume fraction of 30% and gelatin at mass fraction of 5% (maximum: 12.31 MPa). The fiber morphology was more compact when the chitosan fibers impregnated with gelatin at mass fraction of 5 or 10% than chitosan alone. The fracture analysis showed that the new CPC-chitosan fiber-gelatin composite presented many remnants of CPC adhered to fibers. Short minimum essential medium extract test showed no cell growth inhibition after the addition of the new composite. Rat bone marrow stromal cells retain the ability to spread and grow on the composite. Our studies demonstrated that the flexural strength is greatly increased by using CPC incorporated with proper ratio of CF and gelatin. More over, the new composite demonstrated biocompatibility in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.