Abstract

AimThis study aimed to evaluate the mechanical (i.e., flexural modulus [FM], flexural strength [FS], and surface roughness [Ra]) and antibacterial efficacy of photo-sonodynamic therapy via methylene blue-loaded poly(D,L-lactide-co-glycolide) nanoparticles (MB-loaded PLGA NPs) over dental implants for potential treatment of peri-implantitis. MethodsPLGA NPs were synthesized via a solvent displacement method. After the synthesis and confirmation of MB-loaded PLGA NPs via physical (Scanning Electron Microscope [SEM]) and chemical characterization (Fourier transform infrared spectroscopy [FTIR]), the mature dental biofilm of Porphyromonas gingivalis was produced over the surfaces of dental implants. Then, the bacterial viability assessment of the following five study groups was performed: group-I (diode laser treatment); group-II (PDT/MB-loaded PLGA NPs treatment; group-III (ultrasound treatment); group-IV (ultrasound/PLGA NPs-MB treatment); and group-V: control group included the samples without any treatment. Finally, the FS, FM, and Ra of the samples was assessed. ResultsUnder the SEM, the NPs were spherical homogeneous particles having round morphology ranging approximately 100 nm in size without aggregation. The FTIR spectra of PLGA NPs and MB-loaded PLGA NPs demonstrated absorption peaks at approximately 1000 cm−1 to 1200 cm−1 and around 1500 cm−1 to 1750 cm−1. The greatest level of P. gingivalis killing was exhibited by ultrasound/MB-loaded PLGA-NPs-treated samples. The FS was statistically significantly greater for control group samples than any other group (i.e., 100.28 MPa; p<0.05). The FM and Ra ranged between 3.31 and 3.58 GPa and between 0.18 and 0.20 µm without any statistically significant difference between the control and experimental groups (p>0.05), respectively. ConclusionWithin the limitations of this study, the application of photo-sonodynamic therapy via MB-loaded PLGA NPs demonstrated the greatest antibacterial activity against P. gingivalis without deteriorating the surfaces and compromising the mechanical properties of dental implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call