Abstract

The addition of ethylene-propylene-diene rubber (EPDM) into acrylic sheets was expected to enhance their thermal and UV aging resistance for outdoor applications. According to the dissimilar polarity of EPDM and styrene (ST)/methyl methacrylate (MMA) monomer mixture (20/80% (w/w)) used for preparation of acrylic sheets, this research aimed to modify EPDM via graft copolymerization with ST and MMA to increase its compatibility. The graft copolymerization of ST and MMA at a ST/MMA ratio of 25/75% (w/w) onto EPDM was carried out in the solution polymerization initiated by benzoyl peroxide at 90 °C for 16 h, resulting in 88.1% grafting efficiency. The addition of 1.0–3.0% (w/w) of graft EPDM (GEPDM) into the acrylic sheets increased their impact strength (~ 17–22%), but decreased their flexural strength (~ 12–36%). However, their mechanical properties were improved after thermal and UV aging. Scanning electron microscopy (SEM) based analysis of the modified acrylic sheets revealed that the fracture surface shifted from brittle to ductile failure characteristics after modification. The thermogravimetric analysis results also exhibited that the addition of GEPDM improved the thermal and UV resistance of the modified acrylic sheets by increasing their initial decomposition temperature and activation energy of thermal decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call