Abstract

Nanogenerators for acoustic energy harvesting are still in the early stage of development, and many challengessuch asthe optimization of device structure and the design of efficient and sensitive materialsneed to beaddressed.To solve the above-mentioned problems,herein, advancement in synthesized multiferroic material for hybridizing the nanogenerator and efficient harvesting of various energies such as acoustic, mechanical, and vibrational energies is reported. Initially, bismuth ferrate (BiFeO3, BFO)-based composite films are prepared with high ferroelectric and dielectric coefficients. The hybrid nanogenerator (HNG) based on a 3D-printed structure has the highest electrical output which is further improved depending on the BFO loading concentration in the composite film. The 0.5 wt% BFO-loaded PVDF-based HNG offers the enhanced open circuit voltage, short circuit current, and charge density values of ≈30V, ≈1µA, and ≈10 µC/m2, respectively. The optimized HNG is employed to harvest mechanical energy from everyday human life. Furthermore, the HNG layers are used in the fabrication of a multi-energy harvester/sensor (MEH/S) which can harvest/sense various vibrational and acoustic energies under different acoustic frequencies and amplitudes, respectively. The harvested energy from the MEH/S is tested to power portable electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call