Abstract

An experimental technique was developed to determine the finite strain field in heterogeneous, diseased human aortic cross sections at physiologic pressures in vitro. Also, the distributions within the cross sections of four histologic features (disease-free zones, lipid accumulations, fibrous intimal tissue, and regions of calcification) were quantified using light microscopic morphometry. A model incorporating heterogeneous, plane stress finite elements coupled the experimental and histologic data. Tissue constituent mechanical properties were determined through an optimization strategy, and the distributions of stress and strain energy in the diseased vascular wall were calculated. Results show that the constituents of atherosclerotic lesions exhibit large differences in their bilinear mechanical properties. The distributions of stress and strain energy in the diseased vascular wall are strongly influenced by both lesion structure and composition. These results suggest that accounting for heterogeneities in the mechanical analysis of atherosclerotic arterial tissue is critical to establishing links between lesion morphology and the susceptibility of plaque to mechanical disruption in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.