Abstract

Currently, the effect of intrathoracoabdominal, extrapulmonary volume displacements (Vep) are not well understood. Various clinical conditions can lead to volume displacements caused by gas or liquid accumulations. To analyze the pressure and volume changes that occur by Vep, we used a mathematical model of chest wall and lung mechanics that accounts for static changes associated with rib cage, diaphragm, abdomen, and lungs. By solving the model equations, we obtained simulations of the pleural and abdominal displacements that clearly differentiate the mechanisms involved. When abdominal displacement occurs, the reduction in lung volume is less than that caused by an equal displacement in pleural space. Abdominal displacement produces an increased pressure that expands the rib cage significantly, whereas pleural displacement does not produce a comparable action. Furthermore, our model predicts the conditions under which the work of inspiration is expected to increase as a consequence of these displacements. Finally, an important distinction is predicted between abdominal displacements caused by gas or liquid accumulation. Although an abdominal gas displacement tends to decrease the resting lung volume, the weight effect of a liquid displacement tends to increase the resting lung volume by pulling down the diaphragm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.