Abstract

Distraction osteogenesis (DO) has become increasingly popular to correct craniosynostosis. Disadvantages of DO include the secondary operation needed for device removal and titanium screw related dura injury. To reduce invasiveness of the secondary device removal operation and to overcome titanium-related problems, fixation of the cranial distractor with resorbable materials is a potential alternative. New resorbable fixation methods, such as ultrasound-activated pins (UAPs) or heat-activated pins (HAPs), allow faster attachment on thinner bone than conventional resorbable screws (CRSs) since tapping is not required. However, resorbable materials are designed to be attached with a resorbable plate, not with a titanium distractor.We evaluated the suitability of CRSs, HAPs and UAPs for the cranial distractor fixation in a laboratory setting with a mechanical testing machine. Fracture tests were conducted in two directions with respect to the longitudinal axis; vertical i.e. axial pull-out strength, and horizontal i.e. shear strength. Mean maximum pull-out strength for CRS, HAP and UAP was 48.9 N, 32.5 N and 14.7 N, respectively. Mean maximum shear strength for CRS, HAP and UAP was 40.8 N, 77.9 N and 38.9 N, respectively. According to our in vitro tests, the cranial distractor attachment with four CRSs or six HAPs per footplate would provide sufficient fixation stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.