Abstract

Due to several advantages, insulated glass units (IGUs) are largely used in buildings to realize curtain walls, vertical partitions but also roofs or pedestrian systems. The typical IGU consists of two glass layers, either monolithic and/or laminated sections, that can mechanically interact via an hermetically-sealed air (or gas) cavity between them. As known, load sharing phenomena have a crucial effect on the actual mechanical response of a given IGU. Accordingly, simplified analytical methods are available in the literature to account for these load sharing effects. The existing approaches, however, assume that the spacers providing the mechanical connection along the edges of glass panels are infinitely rigid. In this paper, original experimental tests are proposed for IGU specimens characterized by the presence of different types of spacer connections, as obtained from on a selection of configurations of technical interest. The actual mechanical contribution of spacer components is then investigated, giving evidence of major findings from small-scale shear and IGU four-point bending tests. Based on comparative test observations, the edge connection efficiency is then assessed for the investigated configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.