Abstract
Liposomes are micro-compartments made of lipid bilayer membranes possessing the characteristics quite similar to those of biological membranes. To form artificial cell-like structures, we made liposomes that contained subunit proteins of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shapes by mechanical forces generated by the polymerization of encapsulated subunits of microtubules. On the other hand, disk- or dumbbell-shaped liposomes were developed by the polymerization of encapsulated actin. Dynamic processes of morphological transformations of liposomes were visualized by high intensity dark-field light microscopy. Topological changes, such as fusion and division of membrane vesicles, play an essential role in cellular activities. To investigate the mechanism of these processes, we visualized the liposomes undergoing topological transformation in real time. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.