Abstract

ncreasing functionality accompanied with device miniaturization in microelectronics has led to increased market demand for packages with small form factor. Over the years, embedded wafer level packaging (EWLP) has become an attractive option since it allows a reduction in package size and height. In the EWLP approach, the singulated dies are embedded within the molding compound through the wafer level compression molding process. For this study, critical mechanical challenges such as die shift and thermal cycling performance of a multi-chip embedded wafer level package (MCEWLP) are addressed through numerical modeling. For improved accuracy in die shift predictions, both mechanical effects and fluidic effects need to be taken into account. Mechanical effects account for around 75% of the die shift while fluidic effect contributes to the remaining 25%. It is shown that reducing the die size and the inclusion of UBM as a buffer layer can effectively increase the fatigue life of the packages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.