Abstract

Titanium aluminides ([gamma]-TiAl or [alpha][sub 2]-Ti[sub 3]Al) are very useful structural materials for application in the aerospace industry owing to their low density, high specific strength and modulus, and good oxidation and corrosion resistance, at least up to 800 C. However, their use has been limited because of a poor ductility and fracture toughness at room temperature. To improve these properties, TiAl compound was recently made as a composite material containing a secondary phase such as boride, carbide, oxide or nitride or refinement of crystalline by inert gas condensation or mechanical alloying. Itsukaichi et al. reported the mechanical alloying of Al-Ti systems, where the amorphous phase was obtained for the Ti[sub 50]Al[sub 50] system after milling of 1,000h in Ar atmosphere. Suryanarayana et al. also reported that the amorphous phase could be obtained after milling for 25h of a Ti-50 at. % Al system and adding a surfactant such as hexane during mechanical alloying. Ogino et al. reported MA of Ti[sub 0.50]Al[sub 0.50] in N[sub 2] gas. The results obtained show that the diffraction peaks broadened at an intermediate stage of milling and thereafter the powder transformed into a cubic nitride (Ti[sub 0.50]Al[sub 0.50])N. But they have not confirmed themore » formation of an amorphous phase. In this paper, the authors prepared an amorphous Ti-Al phase through mechanical alloying in N[sub 2] gas; thermal behaviors of the amorphous phase were also investigated.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call