Abstract
Fullerene-like orthorhombic-structured Co3C nanoparticles have been synthesized by direct ball-milling of Co and graphene (GE) powders with different Co/GE weight ratios. Electrochemical measurements showed that the Co3C nanoparticles displayed excellent electrochemical hydrogen storage capacities and the maximum capacity reached 1415 mA h/g (5.176 wt% hydrogen) at room temperature and ambient pressure. The reaction mechanism and the reasons for the differences of the Co3C electrodes were also investigated. It was found that the quasi-reversible Co3CHx/Co3C reaction was dominant for all the Co3C electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.